
Farm to Table

CSCI 441-A

Team B

Report #3: Restaurant Automation

Dec 4, 2023

https://github.com/ivanvelocastaneda/CSCI441_A-Team-B-Project.git

Bjarni Jonsson

Cheikh Abdoulaye Faye

Sokhna Khady Mbacke

Ivan Velo Castaneda

1

https://github.com/ivanvelocastaneda/CSCI441_A-Team-B-Project.git

Farm to Table

Table of Contents
Table of Contents 2
Individual Contributions Breakdown 4
Summary of Changes 6
1. Customer Problem Statement 7

a. Problem Statement 7
b. Decomposition into Sub-Problems 9
c. Glossary of Terms 9

2. Goals, Requirements, and Analysis 10
a. Business Goals 10
b. Enumerated Functional Requirements 10
c. Enumerated Non Functional Requirements 11
d. User Interface Requirements 14
e. Activity Diagram 16

3. Use Cases 17
a. Stakeholders 17
b. Actors and Goals 17

i. Initiating Actors 17
ii. Participating Actors 17

c. Use Cases 18
i. Casual Description 18

ii. Use Case Diagram 20
iii. Traceability Matrix 21
iv. Fully Dressed Description 23
v. System Sequence Diagrams 28

4. User Interface Specification 34
a. Preliminary Design 34
b. User Effort Estimation 36

5. System Architecture 39
a. Identifying Subsystems 39
b. Architecture Styles 39
c. Mapping Subsystems to Hardware 40
d. Connectors and Network Protocols 41
e. Global Control Flow 41
f. Hardware Requirements 41

6. Effort Estimation Based on Use Case Points 43
a. Unadjusted Actor Weight 43
b. Unadjusted Use Case Weight 44
c. Technical Complexity Factors 46
d. Environmental Complexity Factors 47

2

Farm to Table

e. Use Case Points 48
f. Duration 48

7. Analysis and Data Modeling 49
a. Conceptual Model 49

i. Concept Definitions 49
ii. Association Definitions 51

iii. Attribute Definitions 53
iv. Traceability Matrix 55

b. System Operation Contracts 56
c. Data Model and Persistent Data Storage 58

8. Interaction Diagrams 60
9. Class Diagram and Interface Specification 68

a. Class Diagrams 68
b. Data Types and Operation Signatures 68
c. Traceability Matrix 75
d. Design Patterns 77
e. Object Constraint Language (OCL) 77

10. Algorithm and Data Structures 78
a. Algorithms 78
b. Data Structures 78

11. User Interface Design and Implementation 80
12. Design of Tests 89

a. Test Cases 89
b. Test Coverage 92
c. Integration Testing 92

13. History of Work, Current Work, and Future Work 94
a. History of work 94
b. Current Work 95
c. Future Work 95

14. References 96

3

Farm to Table

Individual Contributions Breakdown

Topics Bjarni Cheikh Ivan Sokhna

Individual
Contributions
Breakdown

25% 25% 25% 25%

Customer
Problem
Statement

25% 25% 25% 25%

Goals,
Requirements,
and Analysis

25% 25% 25% 25%

Use Cases 25% 25% 25% 25%

User Interface
Specification

25% 25% 25% 25%

System
Architecture

25% 25% 25% 25%

Project size
estimation
based on use
use case points

25% 25% 25% 25%

Analysis and
Data Modeling

25% 25% 25% 25%

Interaction
Diagrams

25% 25% 25% 25%

Class Diagram
and Interface
Specification

25% 25% 25% 25%

Algorithms and
Data Structures

25% 25% 25% 25%

4

Farm to Table

User Interface
Design and
Implementation

25% 25% 25% 25%

Design of Tests 25% 25% 25% 25%

Project
Management
and Plan of
Work

25% 25% 25% 25%

References 25% 25% 25% 25%

5

Farm to Table

Summary of Changes
- Updated problem statements for manager, host and customers.
- Updated Goals, Requirements, and Analysis
- Updated glossary
- Updated User Interface Requirements
- Updated User interface Design and Implementation
- Updated Analysis and Domain Modelling
- Updated Interaction Diagrams
- Updated Class Diagram and Interface Specification
- Updated Breakdown of Responsibilities
- Added to Plan of Work
- Updated Database Diagram
- Updated Class Diagram
- Updated Design of Tests
- Added Design Patterns and Object Constraint Language
- History of Work, Current Status, and Future Work

6

Farm to Table

1. Customer Problem Statement(updated)
a. Problem Statement

Manager:
Running a restaurant and overseeing employees is a challenging responsibility.
My daily tasks can potentially be overwhelming at times. Some tasks include,
keep track of which employees are on duty, figure out the payroll for every pay
period, ensure employees punctuality and their compensation. Any means to
reduce the effort required for these tasks would be greatly appreciated.
Additionally, I should have the flexibility to update the menu with ease to ensure
that we are matching the times we are actually serving and make modifications if
needed in case we run out of the certain item. I should also have the flexibility to
add and remove employees from the system to ensure we do not encounter an
instance where we do not have the necessary employees to properly run a shift.
Farm to table serves as an employee portal, enabling employees to conveniently
clock in and out while automatically calculating their compensation and hours
worked. This feature will significantly make my life easier as I will no longer
need to manually log employee hours or perform pay calculations. The site will
handle these tasks smoothly. Furthermore, Farm to Table provides a swift
interface for menu editing and staff adjustments, enhancing overall efficiency.
Waiter/Waitress:
Working as a waiter/waitress can be an incredibly demanding job, requiring us to
be constantly on the move within the restaurant. We have to take customers
orders, keep track of table orders, deliver orders quickly to ensure food stays hot
and manage the process of closing out checks when customers are ready to pay
their bill. With multiple tables in the restaurant, it can be a difficult process to
keep track of what tables ordered what items and to determine what tables need to
be cleaned and prepared for the next customer. Unfortunately, sometimes we have
to send dishes back if it is not up to the customers standards or find something
wrong with it. A site like Farm to Table would be immensely beneficial in
allowing us to take customer’s orders, keep track of them in the site, and send
them directly to the kitchen. We would also love to receive notifications whenever
our food is finished getting prepared so the food does not stay on the window for
too long. Lastly, we would like to close down tabs and input customer’s payment
(whether they paid cash or card) in the site to ensure we are making the correct
amount of tips at the end of the day.
Host/Hostess/Busboy/Busgirl:
When I am welcoming guests into the restaurant, I would like to ensure their
experience goes as smoothly as possible. As groups of multiple sizes arrive, they
often have specific requests and preferences regarding their seating arrangements

7

Farm to Table

based on the number of people in their and where they would like to seat within
the restaurant. Sometimes, there might be a five-person party seeking a booth or
multiple tables put together and it is our responsibility to ensure there is an
available spot and they do not wait too long to get seated. However, it is
occasionally uncertain how long it would be until tables become free to
accommodate a party’s seating preferences.
Finding an appropriate table for our guests can pose a challenge since we do not
know the current status of tables. We have to physically go and check if tables are
clean or not. It would be highly beneficial to have a means of easily tracking
which tables are occupied, or unoccupied. This information would enable us to
provide guests with an estimation of when a suitable seating arrangement can be
made.
A site like Farm to Table can help us identify which tables are occupied, or
unoccupied.
Customer(s):
I love going out to eat, but it can be frustrating at times. It is not the staff’s fault
whatsoever. Sometimes they are incredibly busy and the server can take a long
time to ask for drinks, then go make them, and lastly take our order.Some sort of
device on the table with a menu available to my party would be great in placing
orders immediately without having to wait for my server to get to me if they are
busy. It would also be a great way to have an interactive menu that could offer
more information on each item. It would speed up the process of time spent
waiting.
Cook/Chef:
Working in a kitchen requires a lot of patience and it can be a demanding job at
times. We have to make sure the food is up to standard while simultaneously
making it in a reasonable amount of time. We also have to make sure the order is
accurate because it can be quite horrible if an order is made incorrectly. A person
could potentially get hurt if their order contains an item they are allergic to as a
result of miscommunication between us and the waiting staff. It is up to us and the
waiting staff to ensure we have a happy customer because that means they would
be more likely to come back in the future. It can be annoying at times trying to
track a waiter/waitress down to let them know their food is ready to be delivered
to their table. The food could get cold and take up space on the window,
potentially risking a broken plate or the quality of the meal.
It would be of great help if we could have something to display all incoming
orders. We would also love to have a way to let servers know that their food is
finished without having to yell out their names to reduce the time the food sits on
the window.

8

Farm to Table

Farm to Table will generate a queue of incoming orders with a timestamp so that
we are aware what food orders need to be made first so that we can stay on track.
It would eliminate the necessity of handwritten orders thus eliminating any
confusion in the server's poor handwriting since we would digitally have the
details and requests of the server’s tables. The site will allow us to send servers a
ping to let them know they can come and pick up their meals so that they may be
taken to their tables.

b. Decomposition into Sub-problems
Already described within each problem statement.

c. Glossary of Terms
Cook/Chef: A person who prepares and cooks food, typically as a profession or
as a skilled practitioner
Customer: An individual or group of individuals who visit an eating
establishment to purchase and consume food and beverages
Employee Portal: It serves as a centralized hub where employees can access a
variety of resources, tools, and information related to their employment and
workplace
Floor Plan: Refers to the physical arrangement and design of tables, seating
areas, and other elements within the dining area of a restaurant
Host/Hostess: An employee responsible for managing the front-of-house
operations and ensuring a smooth and welcoming experience for diners
Manager: An individual who holds a position of authority and responsibility
within an organization or business
Menu: A written or printed list of food and beverage items that a restaurant offers
to its customers.
Queue: Typically refers to a line or waiting area where orders wait their turn to be
cooked at a restaurant
Reservation - An arrangement made in advance to secure a table.
Restaurant Automation: Refers to the use of technology and automated systems
to streamline and improve various aspects of restaurant operations
Screen: Can refer to various digital displays or monitors used within the
establishment for different purposes, often leveraging technology to enhance the
dining experience
Tip: Refers to an additional sum of money that customers voluntarily leave for
the staff as a token of appreciation for the service provided
Interfaces - The visual aspect of the software that allows user interaction.
Waiter/Waitress: Often referred to as a server, is an individual employed in the
hospitality industry, typically at restaurants, cafes, or other dining establishments
Window: A platform used to place plates in

9

Farm to Table

2. Goals, Requirements, and Analysis(updated)
a. Business Goals:

b. Enumerated Functional Requirements:

Identifier Priority Requirement

***REQ
-1

5 The system will allow customers and employees to select
items from the menu and put in an order through an
interactive screen.

REQ-2 5 The system provides the host with an interactive screen
that displays the current table layout in the restaurant.

REQ-3 4 The system will notify the chef with new orders and
place them in the kitchen queue.

REQ-4 4 The system should automate and calculate employee
hours and compensation.

***REQ
-5

5 The system should allow managers to easily update menu
items.

REQ-6 4 Employees should have the ability to clock in and out
through an employee portal.

REQ-7 3 The system should offer waitstaff a notification system
for when dishes are ready.

*REQ-8 4 The system should digitally process checks and payments

10

Farm to Table

to assist waitstaff in tip calculation.

REQ-9 3 The system should provide real-time wait time
estimations for guests.

**REQ-
10

5 The system should allow employees to login and logout.

REQ-11 2 The system should allow managers to add/remove
employees from the system.

***REQ
-12

3 The system should allow customers and employees to
view an order’s status.

Modified Functional Requirements:

Iden
tifie

r

Pri
orit
y

Requirement Comments

RE
Q-1

5 The system will allow
employees to select items from
the menu and put them in an
order through an interactive
screen located in the
server/manager interface .

Instead of allowing customers to
place orders, employees will be
the only individual to be able to
do such things.

RE
Q-5

5 The system should allow
managers to easily update menu
items.

The system will no longer
notify the staff about
unavailable dishes.

*RE
Q-8

4 The system should digitally
process checks and payments to
assist waitstaff in tip
calculation.

This part will not be
implemented by Demo #2.

**R
EQ-
10

5 The system should allow
customers and employees to
login and logout.

This part will not be
implemented.

RE

3 The system should allow
employees to view an order’s

The system will only allow
employees to view an order’s

11

Farm to Table

Q-1
2

status. status. Customers will not have
the choice to do so.

(*) This requirement will not be implemented by demo 2, and is available for
future development.
(**) This requirement will not be implemented.
(***) This requirement has been modified since the previous report.

c. Enumerated Nonfunctional Requirements:

Identifier Priority Requirement

***NFR
EQ-1

5 The system provides customers with an interactive screen
that displays current table layout in the restaurant.

**NFRE
Q-2

5 The system must be secure, protecting all data especially
payment and personal information in compliance with
regulations.

**NFRE
Q-3

4 The system should integrate seamlessly with existing
systems or software used in the restaurant.

NFREQ-
4

4 The system should be scalable to accommodate the
restaurant's growth or changes.

**NFRE
Q-5

3 The system should offer training modules or guides to
assist employees in understanding the functionalities.

**NFRE
Q-6

3 The system should have a feedback mechanism for users
to report issues or provide suggestions for improvement.

**NFRE
Q-7

4 The system must have a high availability, ensuring it
remains operational during peak restaurant hours.

**NFRE
Q-8

3 The system should offer multi-language support for
diverse customer bases.

***NFR
EQ-9

3 The system should allow customers to add extras or
remove items from order.

NFREQ-
10

3 The system should allow everybody to view item
ingredients.

12

Farm to Table

*NFRE
Q-11

3 The system should allow everybody to create a
reservation.

**NFRE
Q-12

2 The system should allow customers to create an rewards
account for points

*NFRE
Q-13

3 Allow customers to order take out

Modified Nonfunctional Requirements:

Iden
tifie

r

Pri
orit
y

Requirement Comments

NF
RE
Q-1

5 The system provides employees
with an interactive screen that
displays all the tables in the
restaurant.

Customers will no longer have
the choice to see the current
layout of the restaurant, only
customers will be able to see the
layout.

*NF
RE
Q-2

5 The system must be secure,
protecting all data especially
payment and personal
information in compliance with
regulations.

This will not be implemented by
Demo #2.

**N
FR
EQ-
3

4 The system should integrate
seamlessly with existing
systems or software used in the
restaurant.

We will not implement this.

**N
FR
EQ-
5

3 The system should offer training
modules or guides to assist
employees in understanding the
functionalities.

We will not implement this.

**N
FR
EQ-
6

3 The system should have a
feedback mechanism for users
to report issues or provide
suggestions for improvement.

We will not implement this.

13

Farm to Table

**N
FR
EQ-
8

3 The system should offer
multi-language support for
diverse customer bases.

We will not implement this.

*NF
RE
Q-9

3 The system should allow
customers to add extras or
remove items from order.

This will not be implemented by
Demo #2.

NF
RE
Q-1
1

3 The system should allow
everybody to create a
reservation.

This will not be implemented by
Demo #2.

**N
FR
EQ-
12

2 The system should allow
customers to create an rewards
account for points

We will not implement this.

*NF
RE
Q-1
3

3 Allow customers to order take
out

This will not be implemented by
Demo #2.

(*) This requirement will not be implemented by demo 2, and is available for
future development.
(**) This requirement will not be implemented.
(***) This requirement has been modified since the previous report.

d. User Interface Requirements

Identifier Priority Requirement

***USRE
Q-1

5 Interactive Menu Display: The interface should provide
customers with a visual and interactive menu. This
should include clear images of dishes, concise
descriptions, and the price. The interface should be
intuitive for customers to place an order directly from
this menu.

***USRE 4 Table Layout Visualization: Hosts and waitstaff should

14

Farm to Table

Q-2 have a graphical interface displaying the current status
of all tables in the restaurant (occupied, free, needs
cleaning). It should be possible to update the table
status in real-time.

***USRE
Q-3

3 Interactive Order Display: The interface should provide
customers with a visual and order status screen. This
should keep customers more informed of their order
status.

*USREQ-
4

3 Customer Account Page: The interface provides
customers with a web page where they can log into
from home to place orders for take-out or make table
reservations.

Modified User Interface Requirements

Ident
ifier

Prio
rity

Requirement Comments

USR
EQ-
1

5 Interactive Menu Display: The
interface should provide
customers with a visual and
interactive menu. This should
include clear images of dishes,
concise descriptions, and the
price.

Customers will not have the
option to place an order from
the menu.

USR
EQ-
3

3 Interactive Order Display: The
interface should provide
employees with a visual and
order status screen. This should
keep customers more informed
of their order status.

Customers will not have the
option to see their order status.
Only employees will know
such information.

*US
REQ
-4

3 Customer Account Page: The
interface provides customers
with a web page where they
can log into from home to
place orders for take-out or
make table reservations.

We will not implement this by
Demo #2.

15

Farm to Table

(*) This requirement will not be implemented by demo 2, and is available for
future development.
(**) This requirement will not be implemented.
(***) This requirement has been modified since the previous report.

e. Activity Diagram

16

Farm to Table

3. Use Cases
a. Stakeholders

i. Restaurant Owners - They have an interest in using the system to help
optimize efficiency in the restaurant and provide quality customer service
for customers.

ii. Employees and Managers - The system will streamline their workload of
their process and make their job much easier.

iii. Customers - The system will enrich their dining experience since they will
have a chance to interact with it.

iv. Developers - They have an interest in improving and implementing a
system that would create solutions to small restaurants' problems without
automation face on a daily basis.

b. Actors and Goals
i. Initiating Actors

Actor Role Goal

Manager The manager is the employee
in charge of managing the
wait staff and the additional
needs of the restaurant.

The goal of the manager is to
manage employees and their
schedules, keep track of inventory,
monitor revenues and losses and
also ensure restaurant customers
have an enriching dining
experience.

Employee The employee is any type of
wait staff at the restaurant,
except for the manager.

The goal of the employee is to
provide customers with an
excellent dining experience.

Customer The customer is a restaurant
visitor who chooses to either
dine in, order take out, views
the menu, orders a meal, and
pays for service

The goal of the customer is to
have an enriching dining
experience with minimal wait
time and great service.

ii. Participating Actors

Chef The chef is responsible for preparing and cooking food that
is ordered by customers. They receive a queue of orders
and prepare them as they come in. They then send a ping to
the servers to let them know their food is ready.

17

Farm to Table

Host/Hostess The host/hostess is in charge greeting customers and
seating them. They can see table status (occupied,
unoccupied, dirty) through the database. After seating the
customers, they then mark the table as occupied.

Waiter/Waitress The waiter/waitress is responsible for taking orders from
customers, sending them to the kitchen, and serving the
food when it is ready. They receive notifications from the
kitchen when their meal is ready so they can go and serve
it.

Database The database is a system that records a customer’s order,
table layout of the restaurant, menu options, etc. It acts as
the storage of all information for our site to function
properly.

c. Use Cases
i. Casual Description

UC-1: Clocking in/Clocking out-Allow employees to clock in when they
first come in to work or after they take a break and clock out after
finishing their shift or before taking a break.
Derivations: REQ-6
**UC-2: Log in/Log out-Allow employees and customers to log in/log
out into the system which will determine what interface they will have
access to.
Derivations: REQ-10
UC-3: View Menu-Allows employees and customers to view the items on
the menu and item ingredients.
Derivations: USREQ-1 / NFREQ-10
***UC-4: Place Order-Allows employees and customers to place orders
and add/remove items from meals.
Derivations: USREQ-1 / REQ-3 / NFREQ-13 / REQ-1
UC-5: View/Update Table Status-Allows to view the table status of all
tables whether occupied, unoccupied, dirty.
Derivations: USREQ-2
*UC-6: Make/View all reservations-Allow only employees to view
reservations. Also allow customers to make or cancel reservations.
Derivations: NFREQ-11
*UC-7: Print Out Reports-Allow managers to print out employee’s
reports at the end of their shift.

18

Farm to Table

Derivations: REQ-4
*UC-8: Payment-Allows employees and customers to split the bill and
allow customers to pay on the spot (credit-card reader) if they desire it.
Derivations: REQ-8
**UC-9: Checking guests are happy/Rating-Allows customers to give
feedback for the service provided throughout the visit.
Derivations: NFREQ-6
UC-10: Order status-Allows employees to update and view order status,
and customers to view order status.
Derivations: USREQ-3 / REQ-12 / REQ-2
UC-11: Add/Remove employees from system-Allow manager to add
employees to system when hiring and remove employees from system
when firing.
Derivations: REQ-11
UC-12: Meal Prep-Allows chefs to see incoming orders with a timestamp
and notify employees when their order is ready.
Derivations: REQ-3 / REQ-7
**UC-13: Create a Rewards Account-Allows customers to create a
rewards account.
Derivations: NFREQ-12 / USREQ-4
UC-14: Menu Updates-Allow manager to add or remove items from
menu.
Derivations: REQ-5
**UC-15: Select Language-Allow customers to select a different
language.
Derivations: NFREQ-8

Ident
ifier

Requirement Comments

*UC
-2

Allow employees and
customers to log in/log out into
the system which will
determine what interface they
will have access to

We will not implement this.

UC-
4

Allows employees to place
orders and add/remove items
from meals.

Customers will not be able to
place orders.

19

Farm to Table

*UC
-6

Allow only employees to view
reservations. Also allow
customers to make or cancel
reservations.

We will not implement this by
demo #2.

*UC
-7

Allow managers to print out
employee’s reports at the end
of their shift.

We will not implemented this
by Demo #2.

*UC
-8

Allows employees and
customers to split the bill and
allow customers to pay on the
spot (credit-card reader) if they
desire it.

We will not implemented this
Demo #2.

**U
C-9

Allows customers to give
feedback for the service
provided throughout the visit.

We will not implement this.

**U
C-13

Allows customers to create a
rewards account.

We will not implement this

**U
C-15

Allow customers to select a
different language.

We will not implement this

(*) This requirement will not be implemented by demo 2, and is available for
future development.
(**) This requirement will not be implemented.
(***) This requirement has been modified since the previous report.

ii. Use Case Diagram

20

Farm to Table

iii. Traceability Matrix

21

REQ’t PW 1 2 3 4 5 6 7 8 9 10 1
1

1
2

1
3

1
4

15

REQ-1 5 X

REQ-2 5 X

REQ-3 4 X X

REQ-4 4 X

Farm to Table

22

REQ-5 5 X

REQ-6 4 X

REQ-7 3 X

REQ-8 4 X

REQ-9 3

REQ-10 5 X

REQ-11 2 X

REQ-12 3 X

NFREQ-1 5

NFREQ-2 5

NFREQ-3 4

NFREQ-4 4

NFREQ-5 3

NFREQ-6 3 X

NFREQ-7 4

NFREQ-8 3 X

NFREQ-9 3 X

NFREQ-10 3 X

NFREQ-11 3 X

NFREQ-12 2 X

NFREQ-13 3 X

USREQ-1 5 X X

USREQ-2 4 X

Farm to Table

iv. Fully-Dressed Description

UC-3: View Menu

Related Requirements:
USREQ-1, NFREQ-10

Initiating Actor:
Employee (for assisting customers or placing orders), Customer (for
placing orders or inquiries)

Actor’s Goal:
To view detailed information about menu items, including images,
descriptions, prices, and ingredients

Participating Actors:
Database, Interactive Menu Display

Preconditions:
The restaurant's menu is updated and available in the system.
The system is operational and accessible by both employees and
customers.

Postconditions:
The employee or customer has successfully viewed the desired menu
items and their details.

Flow of Main Success Scenario:
1. ← The employee or customer accesses the system to view the

menu.
2. ← The database retrieves the menu items, including images,

descriptions, prices, and ingredients.
3. ← The Interactive Menu Display presents the menu items in an

organized and visually appealing manner with suggestions.
4. ← The employee or customer can select individual items to view

more detailed information, including ingredients.
5. ← The employee or customer can navigate through different

sections of the menu with ease.

23

USREQ-3 3 X

USREQ-4 3 X

Farm to Table

Flow of Events for Alternate Success Scenario:
1. ← The employee or customer accesses the system to view the

menu.
2. ← The database fails to retrieve the menu items due to a system

error.
3. ← The employee or customer is informed of the system error

and is asked to try again later.
4. ← The menu remains inaccessible until the error is resolved.

UC-4: Place Order

Related Requirements:
USREQ-1, REQ-3, NFREQ-13, REQ-1

Initiating Actor:
Employee (for assisting customers or placing special orders), Customer
(for placing orders).

Actor’s Goal:
To efficiently place an order, customize meals by adding or removing
items, and ensure the kitchen is notified of the new order.

Participating Actors:
Database, Interactive Menu Display, Kitchen Queue System.

Preconditions:
The restaurant's menu is updated and available in the system.
The system is operational and accessible by both employees and
customers.
The kitchen is operational and ready to receive new orders.

Postconditions:
The order has been successfully placed and added to the kitchen queue.
The customer receives a confirmation of their order.

Flow of Main Success Scenario:
1. ← The employee or customer accesses the Interactive Menu

Display to view the menu.
2. ← They select desired items, customizing them by adding or

removing ingredients as needed.

24

Farm to Table

3. ← Once the order is finalized, they confirm the order.
4. ← The system saves the order in the database and notifies the

kitchen via the Kitchen Queue System.
5. ← The chef receives the new order and begins preparation.
6. ← The customer receives a confirmation, including order details

and an estimated wait time.

Flow of Events for Alternate Success Scenario:
1. ← The employee or customer accesses the Interactive Menu

Display to view the menu.
2. ← They select desired items but encounter a system error when

trying to customize or confirm the order.
3. ← The employee or customer is informed of the system error

and is asked to try again.
4. ← If the error persists, they may need to place the order

manually or seek assistance.

UC-10: Order Status

Related Requirements:
USREQ-3, REQ-12, REQ-2

Initiating Actor:
Employee (for updating and viewing order status)

Actor’s Goal:
To keep the order process transparent and informed for both employees
and customers.

Participating Actors:
Database, Interactive Display Screen.

Preconditions:
An order has been placed by the customer.
The system is operational and accessible by both employees and
customers.

Postconditions:
The order status is updated and visible to relevant parties.

Flow of Main Success Scenario:

25

Farm to Table

1. ← The employee accesses the system to view or update the
order status.

2. ← The database retrieves the current status of the order.
3. ← If accessed by an employee, they have the option to update

the order status (e.g., "preparing", "ready for pickup", "served").
4. ← The updated status is saved in the database.
5. ← The Interactive Display Screen shows the updated status to

the employee

Flow of Events for Alternate Success Scenario:
1. ← The employee accesses the system to view the order status.
2. ← The database fails to retrieve the current status due to a

system error.
3. ← The employee is informed of the system error and is asked to

try again later.
4. ← The order status remains unchanged until the error is

resolved.

UC-12: Meal Prep

Related Requirements:
REQ-3 / REQ-7

Initiating Actor:
Chef

Actor’s Goal:
Efficiently prepare meals in accordance with customer order, and notify
the waitstaff when dishes are ready for serving.

Participating Actors:
Kitchen Queue System, Notification System, Waitstaff, .

Preconditions:
The restaurant must be open and actively serving customers.
Necessary ingredients and equipment should be available in the kitchen.
The Kitchen Queue System is functional and displays incoming orders.
The Notification System is set up to alert waitstaff.

Postconditions:
Meals are prepared and ready to be served.

26

Farm to Table

Order status is updated to “Prepared” in the order management system
and the waitstaff has been notified that the dish is ready for serving.

Flow of Main Success Scenario:
1. ← The chef accesses the Kitchen Queue System to view

incoming orders.
2. ← Orders are displayed with a timestamp indicating when they

were placed.
3. ← The chef begins preparing the dishes based on the order of

arrival and priority.
4. ← Once a dish is ready, the chef uses the Notification System to

alert the relevant waitstaff.
5. ← The waitstaff receives the notification and proceeds to serve

the dish to the customer.

Flow of Events for Alternate Success Scenario:
1. ← The chef accesses the Kitchen Queue System to view

incoming orders.
2. ← The system fails to display new orders due to a technical

glitch.
3. ← The chef informs the management about the system error.
4. ← Until the system is restored, manual communication may be

required between the waitstaff and the chef to manage orders.

*UC-13: Create a Rewards Account

Related Requirements:
NFREQ-12, USREQ-4

Initiating Actor:
Customer

Actor’s Goal:
To avail discounts based off their spending at the restaurant

Participating Actors:
Database

Preconditions:
The user gets into and loads the system
The user plans to complete a purchase

27

Farm to Table

Postconditions:
The user has earned an appropriate amount of points based on how
much they spent

Flow of Main Success Scenario:
1. ← At the beginning, the system prompts the customer to either

create an account or log in.
2. ← The database will retrieve the customer’s information with

their current point balance.
3. ← The customer selects their desired food items and proceeds to

confirm the order.
4. ← The customer enters payment.
5. ← The database is updated with the customer’s points based on

their transaction.

Flow of Events for Alternate Success Scenario:
1. ← At the beginning, the system prompts the customer to either

create an account or log in.
2. ← The database will retrieve the customer’s information with

their current point balance.
3. ← The customer selects their desired food items and proceeds to

confirm the order.
4. ← The customer does nor completes or enters payment.
5. ← The database indicates that the transaction is incomplete and

points have not been added.

v. System Sequence Diagrams
*UC-13: Create a Rewards Account sequence diagram was not completed
for Demo #2.

28

Farm to Table

29

Farm to Table

30

Farm to Table

31

Farm to Table

32

Farm to Table

33

Farm to Table

4. User Interface Specification(updated)
1. Preliminary Design

1. View Menu User Interface Specification
a. After successfully signing in to their role-specific interface,

managers and servers will be able to navigate through the
restaurant’s menu using intuitive categories which will be
available to them by clicking on the “View Menu” button.
Each menu item will be presented with essential details
such as name, description, price, and a detailed list of
ingredients.

2. Place Order User Interface Specification
a. Within their role specific interface, managers and servers

will have the capability to manage customers orders and
navigate the restaurant’s table layout. When the user clicks
on the “Place Order” directs users to the table layout view,
which presents an overview of all the tables within the
restaurant. Users can interact with this layout by selecting
tables to take customer orders.

b. Furthermore, users can efficiently manage their orders by
clicking on the “View Tables” button, which displays a list
of current tables and their associated details.

3. Order Status User Interface Specification
a. Within their role specific interface, managers and servers

will have the capability to see the status of their existing
orders in the restaurant. When the user clicks on the “Order
Status” button, they will be able to update or check the
status of orders in real-time. This will allow wait staff and
customers to stay informed about order progress and
effectively manage customer expectations throughout their
dining experience. It is important to note that customers
will not have the capability to update orders. They will only
be able to see their order progress.

4. Meal Prep User Interface Specification
a. Within their role specific interface, chefs will be able to see

incoming orders sent by servers. The Chef’s specific
interface will enable chefs to view detailed order
information and effectively communicate with servers
when an order is prepared and ready for delivery to the
respective table. When they click on the “Orders” button,

34

Farm to Table

they will see detailed information about each order,
including meal items, special requests, and table number.

b. Once a table’s order is ready, chefs will have the ability to
let a server know when their food is ready by clicking on
the “Ready” button. This action notifies the respective
server that the order is prepared and ready to be served to
the designated table.

5. Create a Rewards Account User Interface Specification
a. Creating a rewards account will allow customers to earn

points through purchases which will earn them points for
recent transactions. They will have access to see a detailed
transaction history detailing earned and redeemed for
transparency.

b. After creating a rewards account and log in using their
credentials, a dashboard displaying the user’s current points
balance and summary of their rewards program status.
There will be a clear visualization of earned, redeemed, and
expiring points.

c. Customers will also be able to manipulate their user profile
settings which can be used to update their contact
information, change their password, etc. Such a program
aims to empower customers and foster their customer
engagement and loyalty within the restaurant’s rewards
program.

6. Reports User Interface Specification
a. A sales report that provides a summary of daily, weekly, or

yearly sales.
b. An inventory report that tracks the levels of ingredients in

the kitchen and supplies.
c. A labor cost report that analyzes salaries and wages. It will

also compare labor costs to sales to determine labor cost
percentages. Lastly, it would aid to optimize staffing levels
to maintain efficiency and control costs.

d. A food cost report that calculates the cost of ingredients
and compares food costs to revenue to calculate food cost
percentage. It will help adjust menu pricing and control
food expenses.

e. A profit and loss report that provides an overview of
revenues, costs, and expenses. It will help analyze net profit
or loss over a specific period.

35

Farm to Table

f. A customer feedback report that summarizes reviews,
comments, and ratings. It will help identify areas of
improvement based on customer feedback and enhance
customer satisfaction and the refinement of services.

g. A payment and transactions report that will track payment
methods (cash, credit card, rewards payments) used by
customers. It will provide an insight into popular payment
methods.

2. User Effort Estimation
Figure 1: Home Page of the System

Figure 2: Servers/Manager Interface

Figure 3: Customer Interface

36

Farm to Table

1. Clock in/Clock out: The following sequence of actions would
allow an employee with the code “6254” to either clock in or clock
out with a total of 2 mouse clicks and 4 keystrokes.
NAVIGATION: Total 2 mouse clicks, as follows

a. Click on the “Clock in” or “Clock out” button.
b. Click on the “Confirm” button.

DATA ENTRY: Total of 4 keystrokes, as follows
a. Press “6”
b. Press “2”
c. Press “5”
d. Press “4”

2. Log in: The following sequence of actions would allow an
employee with the code “6254” to log in into the system to place
an order with a total of 1 mouse click and 4 keystrokes
NAVIGATION: Total 1 mouse click, as follows

a. Click on the “Continue” button.
DATA ENTRY: Total of 4 keystrokes, as follows

a. Press “6”
b. Press “2”
c. Press “5”
d. Press “4”

3. View Menu: The following sequence of actions would allow an
employee to view the menu and item ingredients with a total of
mouse 1 click and 0 keystrokes.
NAVIGATION: Total 1 mouse click, as follows

a. Click on the “Menu” button.
DATA ENTRY: None

37

Farm to Table

4. Place Order: The following sequence of actions would allow an
employee with the code “6254” to place an order for table 1 with a
total of 8 mouse clicks and 4 keystrokes. The following order is as
follows:

2 coffees and 2 classic burgers with french fries.
NAVIGATION: Total 8 mouse clicks, as follows

a. Click on the “Continue” button.
b. Click on the “Table 1” icon.
c. Click on the “Dine in” button or “To go” button.
d. Click on the “Coffee” button twice under the “Beverages”

section.
e. Click on the “Classic Burger” button twice under the

“Burgers/Sandwiches” section.
f. Click on the “French Fries” button twice under the “Sides”

section.
g. Click on the “Confirm” button.
h. Click on the “Send Order” button.

DATA ENTRY: Total of 4 keystrokes, as follows
i. Press “6”
j. Press “2”
k. Press “5”
l. Press “4”

If the user is already signed in, then the data entry portion of this
scenario would not be necessary.

5. View and Update Table Status: The following sequence of
actions would allow an employee with the code “6254” to view
and update the status of a table with a total of 5 mouse clicks and 4
keystrokes. In this case, we want to update the status of table 1
from “dirty” to “unoccupied”.
NAVIGATION: Total 6 mouse clicks, as follows

a. Click on the “Continue” button.
b. Click on the “Table 1” icon.
c. Click on the “Update Status” button.
d. Select “Unoccupied” from the drop down menu.
e. Click “Confirm”.

DATA ENTRY: Total of 4 keystrokes, as follows
f. Press “6”
g. Press “2”
h. Press “5”
i. Press “4”

38

Farm to Table

5. System Architecture
a. Identifying Subsystems

The subsystem above displays our three layer architecture which consists of
Model, View, and Controller. Each layer has a specific responsibility to the entire
system. The Model consists of the data business logic of the system, including
orders, menus, and staff. The View contains the user interface responsible for
displaying the menu, taking orders, and managing employees. It is also
responsible for user interactions. Lastly, the Controller acts as an intermediary
between the model and view, handling user input, updating the model, and
ensuring the view reflects the changes accordingly. There are specific controllers
for different entities like orders, menus, and staff, managing the flow of data and
actions.

b. Architecture Styles
For our website, we will use the Model-view-controller pattern, MVC pattern, a
widely adopted architectural approach for web development. Since some team
members are already familiar with this pattern, it is a well grounded choice. Given
that a restaurant system involves a diverse functionalities such as order
processing, menu management, and staff operations, the MVC pattern will
provide an organized framework to handle these tasks efficiently. It will allow for
flexibility and scalability, enabling different members to work on separate
components simultaneously and accommodate changes in the restaurant’s
operations. Restaurants often have different user interfaces for customers, staff,

39

Farm to Table

and management. It will also allow the development of multiple views tailored to
each user group, providing a more personalized and intuitive user experience.
Lastly, it will allow management to modify or update specific components
without impacting the entire system as they may need to make changes to menu
offerings, or operational processes, leading to cost-effective maintenance and
upgrades.
In addition to MVC, our website will adopt the Client-Server model, an
architecture where the server centrally manages and provides data to various
client interfaces. The system will include different interfaces for customers,
servers, chefs, and managers. In our case, these interfaces will cater to customers,
servers, chefs, and managers, each offering distinct functionalities such as
ordering, making reservations, and menu management. The one-to-many
relationship in the Client-Server model will ensure efficient data handling and
interaction.
Furthermore, our website will integrate the Peer-to-Peer model to streamline
customer payments. This model will enable separate processing of payments,
facilitating secure fund transfers from the customer’s bank account to the
restaurant’s account. This approach will optimize the payment process, enhancing
the overall transaction experience.

c. Mapping Subsystems to Hardware
Yes, our system needs to run on multiple computers. Here's the breakdown:

1. Server Subsystem (Node.js with Express and MySQL): This will be
hosted on a dedicated machine. This subsystem is responsible for handling
all the business logic, database operations, and serving API endpoints.
Given the need for fast response times and the potential for high
concurrent requests, especially during peak restaurant hours, it's crucial to
have this on a robust server machine.

2. Database Subsystem (MySQL): The database will be hosted on a
separate dedicated machine. This separation ensures that the database
operations do not bottleneck the server's performance, and it also provides
an added layer of security. By isolating the database, we can implement
stricter access controls and monitoring.

3. Client Subsystem (Web Browser): This will run on various devices,
including desktops, laptops, tablets, and smartphones. The client
subsystem is responsible for rendering the user interface and interacting
with the server subsystem via API calls. It will cater to different user
interfaces for customers, staff, and management.

40

Farm to Table

d. Connectors and Network Protocols
Given that our system runs on multiple machines, we will primarily use the
following communication protocols:

1. HTTP/HTTPS: This will be the primary protocol for communication
between the client (web browser) and the server (Node.js with Express).
We chose HTTP/HTTPS because it's a standard protocol for web
applications, ensuring compatibility across various devices and browsers.
HTTPS will be used to encrypt the data during transmission, providing an
added layer of security, especially for sensitive operations like payments
and user authentication.

2. MySQL Protocol (via JDBC in Node.js): For communication between
the server subsystem and the database subsystem, we will use the MySQL
protocol through JDBC connectors in Node.js. This choice is due to our
use of MySQL as the database system. The JDBC connector provides a
standardized way to connect Node.js applications to MySQL databases,
ensuring efficient and secure data operations.

3. Peer-to-Peer Protocols: For the Peer-to-Peer model used in customer
payments, specific protocols will be adopted depending on the payment
gateway or service we integrate. This ensures secure and direct fund
transfers between customer accounts and the restaurant's account.

e. Global Control Flow
● Execution orderliness: The system follows an event-driven

fashion. It does not follow a strict linear procedure where every
user has to go through the same steps. Instead, it waits for events
triggered by user interactions. Users can generate actions in
different orders based on their needs and preferences.

● Time dependency: There are no specific timers in the system, and
it is not a real-time system with strict time constraints. It responds
to events as they occur, without periodic time requirements.

f. Hardware Requirements
The following hardware requirements are essential to ensure the reliable and
efficient operation of our system.

● Screen display: The client subsystem (web browsers) requires screens
with varying resolutions, as it runs on devices such as desktops, laptops,
tablets, and smartphones. Specific display requirements may vary based
on device types and screen sizes.

● Disk storage: Both the server subsystem and the database subsystem will
require adequate disk storage.The requirements will depend on the volume
of data and system usage.

41

Farm to Table

● Communication network: the system relies on a stable communication
network with a minimum network bandwidth of 56 Kbps for smooth data
exchange between clients and the server, especially during peak restaurant
hours.

● Database server: The dedicated machine hosting the MyQSL database
subsystem should have sufficient computing resources to handle database
operations efficiently.

● Security Measures: Adequate security measures, such as firewalls,
intrusion detection systems, and encryption protocols should be in place to
safeguard data integrity and protect against threats.

42

Farm to Table

6. Effort Estimation Based on use Case Points(Updated)
a, Unadjusted Actor Weight

Actor Type Description of
how to recognize
the actor type

Weight

Simple
The actor

engages via the
specified API,

which stands for
the application
programming

interface.

1

Average The actor is an
individual

engaging via a
protocol or using
a text-based user

interface.

2

Complex The actor
engages with the

user interface.

3

Actor Name Description of
Relevant

Characteristics

Complexity Weight

Customer Customer
interacts with the

system

Complex 3

Employees(Chef
, Servers,
Managers,

Same as
Customer

Complex 3

43

Farm to Table

Hosts)

Database Database is
another system

interacting
through protocol

Average 2

UAW(Farm to table) = 1* Average + 2 * Complex = 1 * 2 + 2 * 3 = 8

b. Unadjusted Use Case Weight

Actor Type Description of
how to recognize
the actor type

Weight

Simple -Simple user
interface

-Up to one
parcting (plus

initiating actor)
-Number of steps

for the success
scenario : <=3

5

Average - Moderate
interface design -

Two or more
participating

actors - Number
of steps for the

success scenario :
4 to 7

10

Complex - Complex user
interface or
processing -

Three or more
participating

actors - Number

15

44

Farm to Table

of steps for the
success scenario :

>=7

Identifier Number of
actors

Number of
requirements

Complexity Weight

UC-1: Clocking
in /Clocking out

2: Employees and
database

1: REQ-6 Simple 5

*UC-2: Log
in/Log out

3: Employees,
customers and

database

1: REQ-10 Average 10

UC-3: View
Menu

3: Employees,
customers and

database

2: NFREQ-10
and USREQ-1

Complex 15

UC-4: Place
Order

3: Employees,
customers and

database

4: REQ-1,
REQ-3,

NFREQ-13,
USREQ-1

Complex 15

UC-5:
View/Update
Table Status

3: Employees and
customers

1: USREQ-2 Average 10

*UC-6:
Make/View all

reservations

3: Employees,
customers and

database

1: NFREQ-11 Average 10

*UC-7: Print
Out Reports

2: Manager and
database

1: REQ-4 Simple 5

*UC-8: Payment 3: Employees,
customers and

database

1: REQ-8 Average 10

*UC-9:
Checking guests
are happy/Rating

2: Customers and
database

2: NFREQ-6 and
NFREQ-9

Average 10

45

Farm to Table

UC-10: Order
status

2: Customers and
employees

3: REQ-2,
REQ12, and
USREQ-3

Complex 15

UC-11:
Add/Remove

employees from
the system

2: Manager and
database

1: REQ-12 Simple 5

UC-12: Meal
Prep

2: Chefs and
employees

2: REQ-3 and
REQ-7

Average 10

**UC-13: Create
a Rewards
Account

2: Customers and
database

2: NFREQ-12
and USREQ-4

Average 10

UC-14: Menu
Updates

2: Manager and
database

1: REQ-5 Simple 5

**UC-15: Select
Language

2: Customers and
database

1:NFREQ-9 Simple 5

UCW(Farm to Table) = 5*Simple + 7*Average + 3*Complex = 5 * 5 + 7 * 10 + 3 * 15 = 25 + 70
+ 45 = 140

c. Technical Complexity Factors

Technical
factor

Description Weight Perceived
Impact

Calculated
Factor(Weight *

Perceived
Impact)

T1 User expects
good

performance but
nothing out of
the ordinary

1 3 3

T2 End Users
expect efficiency

but no special

1 3 3

46

Farm to Table

demands

T3 Ease of use is
quite crucial to

every user

0.5 5 2.5

T4 Easy to make
changes

1 3 3

T5 No need for
unique training

1 0 0

T6 Restrictive
access for third

parties

1 0 0

T7 There is no
requirement for

reusability

1 1 1

T8 Coexisting use is
required

1 4 4

Environmental Factor Total 16.5

TCF = 0.6 * 0.01* Technical Factor Total = 0.6+0.01 * 16.5 = 0.765

d. Environmental Complexity Factors

Environmental
factor

Description Weight Perceived
Impact

Calculated
Factor(Weight *

Perceived
Impact)

E1 Beginner
familiarity with
the UML-based

development

1.5 1 1.5

E2 Some familiarity 0.5 2 1

47

Farm to Table

with application
problem

E3 Some knowledge
of

object-oriented
approach

1 2 12

E4 Beginner lead
analyst

0.5 1 0.5

E5 Stable
requirements

expected

2 5 10

E6 Programming
language or

average
difficulty will be

used

-1 3 -3

Environmental Factor Total 12

ECF= 1.4-0.03*12=1.04

e. Use Case Points
UCP= UUCP* TCF* ECF From the above calculations, the UCP variables have
the following values: UUCP= UAW + UUCW = 8 + 140 = 148 TCF=0.765
ECF=1.04 For the case study, the final UCP is the following: UCP=
148*0.765*1.04 = 117.75 or 118 use case points

f. Duration
Duration = UCP * PF = 118 * 20 = 2,360 hours

48

Farm to Table

7. Analysis and Domain Modeling(updated)
a. Conceptual Model

i. Concept definitions

Responsibility Type Concept

R1: Facilitate communication
among customer, chef,
server, and busboy

Communicator

R2: Show choices for customer,
waiter, chef, and manager

Interface

*R3: Guide the customer in
choosing a table

Table Status

*R4: Block selection of
unavailable tables

Table Status

*R5: Ensure reserved tables are
not chosen before the
reserved time

Table Status

R6: Update table status upon
customer actions
(selection, departure,
cleaning by busboy)

Table Status

R7: Design and layout of the
restaurant's seating and
table arrangement

Floorplan

*R8: Update floorplan based on
changes in table
arrangements or
renovations

Floorplan

R9: Display a visual
representation of the
restaurant's layout to staff
and customers

Floorplan

49

Farm to Table

R10: Ensure efficient flow and
movement within the
restaurant based on the
floorplan

Floorplan

R11: Line up orders for chef's
preparation

Order Queue

R12: Show orders that are ready
to be served

Serving

R13: Indicate when an order is
received, in preparation,
ready, or delivered

Order Status

*R14: Notify the customer of any
changes in their order
status

Order Status

R15: Allow staff to update the
status of an order

Order Status

R16: Provide a history of all
order statuses for a
particular order

Order Status

*R17: Oversee transaction
processing

Payment System

R18: Manage the flow of data
between the user interface
and the system

Controller

R19: Ensure proper routing of
user requests to appropriate
system components

Controller

R20: Validate user inputs before
processing

Controller

R21: Handle errors and provide
appropriate feedback to
users

Controller

50

Farm to Table

R22: Oversee database
interactions

DB Connection

R23: Maintain employee login
details and work hours

Employee Account

*R24: Save customer login details Customer Profile

*R25: Keep track of customer's
reward points based on past
orders

Customer Profile

*R26: Showcase favorites, top
picks, and frequently
ordered items in
customer/user profile

Customer Profile

R27: Record the customer's
order in the database

Customer Profile

*R28: Manage and allocate
reward points to customers
based on their purchases

Reward System

*R29: Offer special promotions or
discounts to customers
through the reward system

Reward System

*R30: Allow customers to redeem
their reward points for
meals or discounts

Reward System

*R31: Provide a dashboard for
customers to view and
manage their reward points

Reward System

(*) This requirement will not be implemented by demo 2, and is available for future
development.

ii. Association definitions

Concept Pair Association Description Association Name

Customer Account⇔ DB Retrieve customer’s data DBQuery

51

Farm to Table

Connection from the database

Customer Account⇔
Interface

Display customer’s options Display

Interface⇔ Controller Allows users to interact
with the system

User Action

Communicator⇔DB
Connection

Modify or insert data into
the database

DBUpdate

Communicator⇔ DB
Queue

Allows user to send orders
and queue to the database

DBQuery

Controller ⇔ Order Status Allow the staff to update or
view the status of their
food orders

Update Order Status
View Order Status

Controller⇔ Table Status Allows users to view the
status of a table

View Table Status

Controller⇔ Payment
System

Allows users to complete
payments

Make Payment

Payment System⇔ DB
Connection

Stores payments records of
past transactions in the
database

Record Payment

Interface⇔ DB
Connection

Retrieve the data from the
database for the users

DBQuery

Customer Profile ⇔ DB
Connection

Store earned points in the
database

Reward System

Table Status ⇔ Interface Displays the table layout
with the proper status of
the tables

Display

Employee Account ⇔
Interface

Displays the employee’s
actions

Display

Payment System ⇔
Customer Account

Update the points balance
for the users

Update Rewards

52

Farm to Table

Floorplan ⇔ Controller Allow the manager to
adjust the table layout of
the restaurant

Floorplan Layout

iii. Attribute Definitions

Concept Attribute Description

Customer Account userEmail
userPassword

Associated email and
password of the customer.
Guest account is assigned
if there is no account.

Interface sendOrder
Receipt
rateFood
tableStatus

Allow the user to send
orders after choosing food
items.
Allow the user to choose
which way they would like
to receive their
receipt(email, paper)
Allow the user to rate their
meal and then have that
rating stored and displayed
Provides the user with the
up-to-date status of each
table in the restaurant. 2
possible states, “occupied”
and “empty”

Payment System paymentMade Updates the system on
whether or not a payment
has been made

Order Status orderStatus
orderReady
createdAt
updatedAt

Allows the chef to update
the status of orders being
cooked.
Allows the chef to send a
signal to the
waiter/waitress and
customers that the order is
finished.

53

Farm to Table

Allows the chef to see what
time the order was sent.
Allows the chef to see what
time the order was updated.

Order Queue chefQueue Keeps track of incoming
food orders in the order
that they were submitted
for the chef to follow.

Controller tableList
tableConfirm

Shows the employees the
current tables available.
Table is marked in green
once it is picked by an
employee and it turns back
to white when customers
leave.

Communicator customerOrder Each customer order is
stored in the database.

Floorplan viewPlan
tableAdjust

Displays the current layout
of the restaurant.
Allows the manager to
adjust the layout by either
adding tables or deleting
tables.

Employee Account hoursWorked
timeClockedIn
timeClockedOut
role

Display the employee’s
worked hours in a
particular payment cycle.
Display the employee’s id.
Display the time at which
the employee clocked in on
a particular day.
Display the time at which
the employee clocked out
on a particular day.
Display the role of the
employee.

54

Farm to Table

Table Status tableStatus Display if the table is
empty(white) or occupied
(green).

Reward System userBalance
redeemPoints

Display the current reward
points balance of the user.
Allow the user to redeem
points.

DB Connection dbAuthenticationCreds
userID

Store the DB login for
authorized personnel.
Display the employee’s id.

iv. Traceability matrix

Use
Case

P
W

Domain Concepts

Cust
omer
Acco
unt

Interf
ace

Pay
ment
Syste

m

Orde
r

Statu
s

Orde
r

Queu
e

Cont
roller

Com
muni
cator

Floor
plan

Empl
oyee
Acco
unt

Table
Statu

s

Rew
ard

Syste
m

DB
Conn
ectio

n

UC-1 X X X

UC-2 X X X X

UC-3 X X

UC-4 X X X X X X X

UC-5 X X X X X X

UC-6 X X X

UC-7 X X

UC-8 X X X X

UC-9 X X

UC-1
0

X X

55

Farm to Table

Use
Case

P
W

Domain Concepts

UC-1
1

X X

UC-1
2

X X X X

UC-1
3

X X X

UC-1
4

X X X

UC-1
5

X X

b. System Operation Contracts

Operation View Menu

Use Case: UC-3

Preconditions: ● The user logs in to their
account.

● Manager and server select the
“View Menu” button on the
bottom right

Postconditions: The user is taken to the menu interface

Operation Place Order

Use Case: UC-4

Preconditions: ● The user logs into their
account

● Manager and server select the
“Dine in” button or “To Go”
button

● Manager and server select the

56

Farm to Table

table number and enter the
number of guest at the table

Postconditions: The user is taken to the place order
interface

Operation Order Status

Use Case: UC-10

Preconditions: ● The user logs into their
account

● Manager, customer and chef
select the “Order Status”
button on the bottom left

Postconditions: The user is taken to the order status
interface where their order is
displayed

Operation Meal Prep

Use Case: UC-12

Preconditions: ● The user logs into the system
● The chef selects the “View

Orders” button on the bottom
left

Postconditions: The user is taken to the chef interface
where all the orders are displayed
along with their status

Operation Create Rewards Account

Use Case: UC-13

Preconditions: ● The user logs into their
rewards account

57

Farm to Table

● The user makes a purchase

Postconditions: The user has earned rewards points
based on how much they spent

c. Data Model and Persistent Data Storage

Our system will not require persistent data storage beyond a single system
execution. Initially, the user's data will be stored in designated tables based on
their role. For employees, the system will retain essential information such as first
and last names, a unique 4-digit identifier (last four digits of their social security
number), salary, hours worked, work schedule, turnover time, sales, credit card
tips, cash tips, and food percentages. Customers' data will consist of first and last
names, email addresses, passwords, and earned reward points. In the case of

58

Farm to Table

managers, the system will store restaurant transactions for easy access, enabling
them to track total revenue and profit. Additionally, managers will have the ability
to personalize the menu by adding or removing items based on their sales
performance. Crucial data to be stored includes aggregate ratings for each menu
item, item prices, item names, recipes, and item IDs or numbers. All this data will
reside in a MySQL database hosted on our web server.

59

Farm to Table

8. Interaction Diagrams(Updated)
UC:3 View Menu

The diagram demonstrates the interactions in UC-3: View Menu. Here’s a breakdown of the
described interactions:
● The user accesses the site and initiates the login process
● The system will check whether the user is in the database by verifying their login

credentials (userID).
● If the provided credentials match those in the database, the user is verified.
● Based on the user’s role(host, waiter, manager, chef, guest), the system will direct the

user to the specific interface tailored to that role.
● Lastly, the system will display a “View Menu” option that the users can click to see the

menu and the details of it.
The design principles employed in this sequence are the High Cohesion Principle and the Expert
Doer Principle.

● The High Cohesion Principle suggests keeping related functionality grouped together
within a module, class, or component.

○ The principle is employed in the “User Authentication” component which consists
of handling all tasks related to user verification and validation.

○ The principle is employed in the “Role-Based Interface Handling” function which
is responsible for directing the user to the appropriate interface based on their
role.

● The Expert Does Principle suggests responsibility is assigned to the class that has the
necessary information to fulfill it effectively.

60

Farm to Table

○ The principle is displayed in the “User Authentication” component which will
possess the necessary information and methods to authenticate the user effectively
against the database.

○ The principle is employed in the “Role-Based Interface Handling” function
which will utilize its knowledge to handle this responsibility effectively.

○ The principle is employed when the user clicks on the “View Menu” option which
will determine the appropriate action and display the restaurant menu and details
of each menu item accordingly.

In this diagram, the Publisher-Subscriber pattern is used to streamline interactions related
to the "View Menu" scenario. The system component managing menu-related changes
would serve as the Publisher, notifying Subscribers (such as different user interfaces for
various roles) about any alterations. Each Subscriber would express interest in receiving
menu updates. When menu changes occur, the Publisher alerts relevant Subscribers,
ensuring specific interfaces display the updated menu details tailored to users' roles. For
instance, after successful authentication and role identification, the system guides users to
role-specific interfaces featuring the "View Menu" option. Upon selecting this option, the
Publisher would notify respective Subscribers, prompting the display of menu details
aligned with the users' roles. By adopting this pattern, the system maintains flexible
interactions, allowing smooth updates to be generated across different interfaces without
messing with the core menu logic within each interface.

UC-4:Place Order

The diagram demonstrates the interactions in UC-4: Place Order. Here’s a breakdown of the
described interactions:
● The user accesses the site and initiates the login process

61

Farm to Table

● The system will check whether the user is in the database by verifying their login
credentials (userID).

● If the provided credentials match those in the database, the user is verified.
● Based on the user’s role(host, waiter, manager, chef, guest), the system will direct the

user to the specific interface tailored to that role.
● The system will display “Dine in”, “To Go”, or “View Menu” options (options will vary

depending on the role). After the dining option is selected, the user is brought to the next
screen which is seating options. The seating option allows the user to see the full layout
of the restaurant and select the table of their choice.

● After selecting the table number, the user will be moved along to the item options screen
where the user selects the customer’s food items.

● After selecting all the items, the user will click the “Place Order” button and the order
will be sent to the kitchen for preparation.

The design principles employed in this sequence are the High Cohesion Principle and the Expert
Doer Principle.

● The High Cohesion Principle suggests keeping related functionality grouped together
within a module, class, or component.

○ The principle is employed in the “User Authentication” component which consists
of handling all tasks related to user verification and validation.

○ The principle is employed in the “Role-Based Interface Handling” function which
is responsible for directing the user to the appropriate interface based on their
role.

● The Expert Does Principle suggests responsibility is assigned to the class that has the
necessary information to fulfill it effectively.

○ The principle is displayed in the “User Authentication” component which will
possess the necessary information and methods to authenticate the user effectively
against the database.

○ The principle is employed in the “Role-Based Interface Handling” function
which will utilize its knowledge to handle this responsibility effectively.

○ The principle is employed when the user clicks on the “Dine In” or “To Go”
options which will determine the appropriate actions and allow the user to place
orders and send them to the kitchen for preparation.

In the "Place Order" diagram, the Publisher-Subscriber pattern could optimize
interactions. The system component responsible for managing the order placement
process, related to item selection, table allocation, and order transmission to the kitchen,
might serve as the Publisher. It hangs onto the order status and notifies Subscribers about
any modifications or updates. Various interfaces or components, such as those linked to
specific user roles, could function as Subscribers, subscribing to receive real-time updates
regarding order changes. When a user selects "Dine In" or "To Go" options and proceeds
to place orders, the Publisher would notify Subscribers, triggering the appropriate actions

62

Farm to Table

and facilitating order transmission to the kitchen. Implementing this pattern ensures
seamless communication and updates across various interfaces without embedding
order-specific logic within each interface, thereby ensuring system flexibility and
scalability.

UC-10: Order Status

The diagram demonstrates the interactions in UC-10: Order Status. Here’s a breakdown of
the described interactions:
● The user accesses the site and initiates the login process
● The system will check whether the user is in the database by verifying their login

credentials (userID).
● If the provided credentials match those in the database, the user is verified.
● Based on the user’s role(host, waiter, manager, chef, guest), the system will direct the

user to the specific interface tailored to that role.
● Lastly, the system will display an “My Orders” option that the users can click to see their

current orders along with their status.
The design principles employed in this sequence are the High Cohesion Principle and the Expert
Doer Principle.

● The High Cohesion Principle suggests keeping related functionality grouped together
within a module, class, or component.

○ The principle is employed in the “User Authentication” component which consists
of handling all tasks related to user verification and validation.

○ The principle is employed in the “Role-Based Interface Handling” function which
is responsible for directing the user to the appropriate interface based on their
role.

63

Farm to Table

● The Expert Does Principle suggests responsibility is assigned to the class that has the
necessary information to fulfill it effectively.

○ The principle is displayed in the “User Authentication” component which will
possess the necessary information and methods to authenticate the user effectively
against the database.

○ The principle is employed in the “Role-Based Interface Handling” function
which will utilize its knowledge to handle this responsibility effectively.

○ The principle is employed when the user clicks on the “My Orders” option which
will determine the appropriate action and display the orders of the server or
manager along with their information and current status.

In this diagram, the Publisher-Subscriber pattern is used to streamline interactions related
to the "Order Status" scenario. The system component managing order-related changes
would serve as the Publisher, notifying Subscribers (such as different user interfaces for
various roles) about any alterations. Each Subscriber would express interest in receiving
order updates. When order changes occur, the Publisher alerts relevant Subscribers,
ensuring specific interfaces display the order details tailored to users' roles. For instance,
after successful authentication and role identification, the system guides users to
role-specific interfaces featuring the "Order Status" option. Upon selecting this option,
the Publisher would notify respective Subscribers, prompting the display of order details
aligned with the users' roles. By adopting this pattern, the system maintains flexible
interactions, allowing smooth updates to be generated across different interfaces without
messing with the core order status logic within each interface.

UC-12: Meal Prep

64

Farm to Table

The diagram demonstrates the interactions in UC-12: Meal Prep. Here’s a breakdown of the
described interactions:
● The user accesses the site and initiates the login process
● The system will check whether the user is in the database by verifying their login

credentials (userID).
● If the provided credentials match those in the database, the user is verified.
● Based on the user’s role(host, waiter, manager, chef, guest), the system will direct the

user to the specific interface tailored to that role.
● Lastly, the system will display a “View Orders” option that the users can click to see all

incoming orders along with a timestamp (the orders will be sorted based on the time they
were sent to the kitchen, making it easier for chefs to see which orders need to be made
first).

The design principles employed in this sequence are the High Cohesion Principle and the Expert
Doer Principle.

● The High Cohesion Principle suggests keeping related functionality grouped together
within a module, class, or component.

○ The principle is employed in the “User Authentication” component which consists
of handling all tasks related to user verification and validation.

○ The principle is employed in the “Role-Based Interface Handling” function which
is responsible for directing the user to the appropriate interface based on their
role.

● The Expert Does Principle suggests responsibility is assigned to the class that has the
necessary information to fulfill it effectively.

○ The principle is displayed in the “User Authentication” component which will
possess the necessary information and methods to authenticate the user effectively
against the database.

○ The principle is employed in the “Role-Based Interface Handling” function
which will utilize its knowledge to handle this responsibility effectively.

○ The principle is employed when the user clicks on the “View Orders” option
which will determine the appropriate action and display all incoming orders sent
to the kitchen along with a timestamp.

In this diagram, the Publisher-Subscriber pattern could optimize interactions related to
the "View Orders" scenario. The system's component managing incoming orders and
their timestamps would function as the Publisher. It would be responsible for updating
Subscribers, which could include various interfaces or components interested in real-time
order updates. When new orders are placed or modified, the Publisher would notify the
relevant Subscribers, prompting role-specific interfaces (such as the kitchen interface for
chefs) to display the updated orders list, sorted by timestamps. After successful user
authentication and role identification, users would be directed to interfaces pertinent to
their roles, featuring the "View Orders" option. Selecting this option triggers the

65

Farm to Table

Publisher to notify Subscribers, ensuring timely display of incoming orders with
timestamps. Employing this pattern allows for seamless updates across different
interfaces without intricately embedding order-handling logic within each interface,
thereby promoting flexibility and scalability in system functionality.

UC-13 Create Rewards Account

The diagram above demonstrates the interactions in UC-11: Create Rewards Account. Here’s
a breakdown of the described interactions:
● Initially the customer will open the website and proceed to log in. The interface will

verify their account credentials by checking with the database and confirm their account
existence.

● After successfully login, the interface will present a menu and enable the customer to
place an order. Once the order is placed, the customer will be guided to the payment
process.

● Upon successful payment, the interface will transmit the transaction details to the reward
calculator. The calculator will determine the points to be awarded based on the total order
amount, a value defined by the restaurant’s owner or manager.

● Lastly, the calculator will update the customer’s balance in the database. The interface
will then display the new balance to the customer, along with a receipt confirming the
successful completion of the transaction.

The design principles present in this sequence is the High Cohesion Principle, Expert Doer, and
Separation of Concerns.

66

Farm to Table

● The High Cohesion Principle is employed in the interface, primarily dealing with user
interaction, the calculator with points calculation, and the database with the management
of accounts.

● The Expert Doer is present in the design with the reward calculator, calculating points
based on the order total, handles this responsibility effectively, and possesses the
necessary information to perform the task efficiently.

● The Separation of Concerns suggests the separation of functionalities into distinct
components. The interface focuses on user interaction, the reward calculator on points
calculation, and the database on account information.

● In the diagram of "Create Rewards Account," the Publisher-Subscriber pattern can
optimize interactions between distinct system components. The interface handling order
placement, payment processing, and displaying transaction details would serve as the
Publisher. It manages state changes related to successful transactions and notifies
Subscribers, like the reward calculator, about these updates. Upon successful payment,
the Publisher notifies the reward calculator Subscriber, which computes points based on
order totals defined by restaurant parameters. Subsequently, the calculator updates the
customer's balance in the database. Once the balance is updated, the Publisher notifies
Subscribers to display the new balance and transaction confirmation to the customer. This
pattern ensures efficient communication between components without tightly coupling
functionalities, aligning with design principles that advocate for modular and flexible
systems.

67

Farm to Table

9. Class Diagram and Interface Specification(Updated)
a. Class Diagrams

b. Data Types and Operation Signatures
Class: Item_Ingredients

a. Attributes:
i. ingredientName: String - The name of the ingredient.
ii. quantity: double - The quantity of the ingredient.
iii. unit: String - The unit of measurement for the quantity.

b. Operations: None
c. Meaning: Represents an ingredient and its quantity used in a menu item.

Item_Ingredients

#ingredientName: String
#quantity: Double
#unit: String

Class: Ingredients
d. Attributes:

68

Farm to Table

i. ingredientID: int - A unique identifier for the ingredient.
ii. name: String - The name of the ingredient.
iii. cost: double - The cost of the ingredient.

e. Operations:
i. getIngredientCost():Double - Calculates the cost of the ingredient.

f. Meaning: Represents individual ingredients used in menu items. The
getIngredientCost() operation calculates the cost of the ingredient.

Ingredients

#ingredientsID: int
#name: String
#cost: Double

+getIngredientsCost():
Double

Class: Menu_Item
g. Attributes:

i. itemID: int - A unique identifier for the menu item.
ii. name: String - The name of the menu item.
iii. description: String - A description of the menu item.
iv. price: double - The price of the menu item.

h. Operations:
i. calculateCost(): double - Calculates the total cost of the menu item.

i. Meaning: Represents a menu item with a name, description, and price. The
calculateCost() operation calculates the total cost of the menu item.

Menu_Item

#itemID: int
#name: String
#description: String

+calculateCost(): double

Class: Order_Item
j. Attributes:

i. orderID: int - A unique identifier for the order item.
ii. menuID: MenuItem - Reference to the menu item.
iii. ItemQuantity: int - The quantity of the menu item ordered.

k. Operations:

69

Farm to Table

i. calculateTotalCost(): double - Calculates the total cost of the order item.
l. Meaning: Represents an item that is part of an order, with a reference to the menu

item and the quantity ordered. The calculateTotalCost() operation calculates the
total cost of the order item.

Order_Item

#orderID:int
#menuItem: MenuItem
#quantity: int

+calculateTotalCost():
double

Class: TransactionItem
m. Attributes:

i. transactionItemID: int - A unique identifier for the transaction item.
ii. orderItem: OrderItem - Reference to the ordered item.

n. Operations:
i. calculateItemCost(): double - Calculates the cost of the transaction item.

o. Meaning: Represents an item within a transaction, with a reference to the order
item. The calculateItemCost() operation calculates the cost of the transaction
item.

Transaction_Item

#transactionItemID: int
#orderItem: OrderItem

+calculateItemCost(): double

Class: Payment_Method
p. Attributes:

i. methodID: int - A unique identifier for the payment method.
ii. name: String - The name of the payment method.

q. Operations: None
r. Meaning: Represents different methods of payment, such as cash, credit card, or

mobile wallet.

Payment_Method

#methodID: int
#name: String

70

Farm to Table

Class: Transaction
s. Attributes:

i. transactionID: int - A unique identifier for the transaction.
ii. transactionDate: Date - The date of the transaction.
iii. paymentMethod: PaymentMethod - Reference to the payment method

used.
t. Operations:

i. calculateTotalAmount(): double - Calculates the total transaction amount.
u. Meaning: Represents a transaction made by a customer, including the date,

payment method, and the total amount paid. The calculateTotalAmount()
operation calculates the total transaction amount.

Transaction

#transactionID: int
#transactionDate: date
#paymentMethod:
PaymentMethod

+calculateTotalAmount():do
uble

Class: RestaurantTable
v. Attributes:

i. tableID: int - A unique identifier for the table.
ii. capacity: int - The seating capacity of the table.

w. Operations: None
x. Meaning: Represents a table in the restaurant, with a unique ID and a specified

seating capacity.

Restaurant_Table

#tableID: int
#capacity:int

Class: Order
y. Attributes:

i. orderID: int - A unique identifier for the order.
ii. table: RestaurantTable - Reference to the table where the order is placed.
iii. orderItems: List<OrderItem> - List of ordered items.

z. Operations:

71

Farm to Table

i. calculateTotalOrderCost(): double - Calculates the total cost of the order.
aa.Meaning: Represents an order placed by a customer at a specific restaurant table.

It includes a reference to the table and a list of ordered items. The
calculateTotalOrderCost() operation calculates the total cost of the order.

Order

#orderID:int
#table: restaurant table
#orderItems:
List<orderItem>

+calculateTotalOrderCost():
double

Class: Customer
● Attributes:

i. customerID: int - A unique identifier for the employee.
i. UserName: int - the UserName of the customer.
ii. firstName: string- first name of the customer
iii. lastName: String - last name of the customer.
iv. Street: string - the street address of the customer.
v. City: string - city where the customer resides.
vi. State: string - state where the customer resides
vii. Zip: int - zip code where the customer resides.
viii. rewardPoints: int -the customer points earned.
ix. Created_at: dateTime - time when customer account was created.
x. Update_at: dateTime - time when customer account was last updated.
xi. Email: string - email used by customer to log in.

● Operations: None
● Meaning: Represents a customer who visits the restaurant, with a unique customer ID,

name, and contact information. This class can be used to store and manage customer
information for reservations and orders.

customer

#customerID: int
#name: String
#firstName: string
#lastName: String.

72

Farm to Table

#Street: string
#City: string
#State: string# Zip: int
#rewardPoints: int
#Created_at: dateTime
#Update_at: dateTime
#email : string

Class: Employee
bb. Attributes:

i. employeeID: int - A unique identifier for the employee.
ii. Pin: int - the code pin the employee has to enter.
iii. firstName: string- first name of the employee
iv. lastName: String - last name of the employee.
v. Street: string - the street address of the employee
vi. City: string - city where the employee resides.
vii. State: string - state where the employee resides
viii. Zip: int - zip code.
ix. clockedIn: bool - Boolean if employee is clocked in or not.
x. hourlyRate: decimal - employees’ hourly rate.
xi. Created_at: dateTime - time when employee account was created.
xii. Update_at: dateTime - time when employee account was last updated

cc. Operations: None
2.

a. Meaning: Represents an employee working at the restaurant, with a unique ID,
name, and an associated employee type.

Employee

#employeeID: int
#pin: int
#name: String
#firstName: string
#lastName: String
.#Street: string
#City: string
#State: string
#Zip: int
#clockedIn : bool
#hourlyRate: decimal

73

Farm to Table

#Created_at: dateTime
#Update_at: dateTime

Class: ReservationCustomer
b. Attributes:

i. customerID: int - A unique identifier for the customer.
ii. name: String - The name of the customer.
iii. contactInfo: String - Contact information for the customer.

c. Operations: None
d. Meaning: Represents a customer who made a reservation, with a unique ID,

name, and contact information.

Reservation

#customerID: int
#name: String
#contactInfo: String

Class: Employee_Type
e. Attributes:

i. typeID: int - A unique identifier for the employee type.
ii. typeName: String - The name of the employee type.

f. Operations: None
g. Meaning: Represents different types of employees in the restaurant, such as chef,

waiter, or manager.

employee_type

#typeID: int - A unique
identifier for the employee
type.
#typeName: String - The
name of the employee type.

Class: Time_Log
h. Attributes:

i. logID: int - A unique identifier for the time log entry.
ii. employee: Employee - Reference to the employee.
iii. timeClockedIn: DateTime - Timestamp for employee clock in
iv. timeClockedOut: DateTime - Timestamp for employee clock out

74

Farm to Table

i. Operations: None
j. Meaning: Represents a time log entry for an employee, recording their activities

and the timestamp when the activity occurred.

Time_Log

#logID: int
#employee: Employee
#timeClockedIn: DateTime
#timeClockedOut: DateTime

c. Traceability Matrix

Classes Domain Concepts

Custo
mer

Acco
unt

Interf
ace

Paym
ent

Syste
m

Order
Status

Order
Queu

e

Contr
oller

Com
munic
ator

Floor
plan

Empl
oyee
Acco
unt

Table
Status

Rewa
rd

Syste
m

DB
Conn
ection

custome
r

X X X

Menu_it
em

X X

ingredie
nt

X

item_ing
redient

X

order X X X X X

order_it
em

X

transacti
on

X X X X

transacti
on_item

X

75

Farm to Table

Classes Domain Concepts

payment
_method

X X

employe
e

X X

employe
e_type

X

time_log X X

restaura
nt_table

X X X X

reservati
on

X X X X X

Customer Account:
- Customer: Allow customers to create accounts and add personal info
- Order: Add order to customer account.
- Transaction: Allow customer to pay for order
- Payment method: Allow customer to choose payment method
- Reservation: Allow customer to make reservation

Payment System:
- Transaction: Allow payment during transaction

Order Status:
- Order: Allow customers and workers to view and update order status

Order Queue:
- Order: Allow chef to keep track of orders

Controller:
- Restaurant_table: Allow employees to view and change table status
- Reservation: Allow employees to make reservations for customers

Communicator:
- Order: store each order in database

Floorplan:
- Restaurant_table: Allow manager to view all tables in order to change display of tables

Employee Account:
- Employee: Allow employees to their personal info to the system
- Transaction: Keep track of which employee made which transaction
- Time_log: Allow workers to clock in and clock out

76

Farm to Table

Table Status:
- Restaurant_table: Display table status
- Reservations: Allow interface to show which tables are available for reservations

Reward System:
- Customer: Add reward to customers account

DB Connection:
- Customer: Add or fetch customer info from database
- Menu_item: Retrieve or modify menu items in database
- Order: Store each order in the database to keep record
- Transaction: Store each payment made in the database for records
- Employee: Add or fetch employee info form database
- Time_log: Store the exact time each employee clocked in and clocked out
- Reservation: Store every present and future reservation made

d. Design Patterns
We used the broker pattern, this pattern is particularly well-suited for systems where components
need to interact through remote method calls, making it ideal for web applications that involve
client-server communication and database interactions.

The Broker pattern facilitates efficient communication between different components of the
system, the front-end interface, the server-side logic, and the database. It essentially acts as a
middleman, coordinating the interactions between these components. This is particularly useful
in a web application like the one we are developing, where requests from the web interface need
to be processed by the server before any interaction with the database can occur. By employing
this pattern, the application will be able to handle client requests more efficiently, as the broker
will manage these interactions, ensuring that requests are routed to the appropriate components
and responses are returned swiftly to the user.

The Broker pattern supports a modular design, which aligns well with the collaborative nature of
the project. Each team member can work on different modules (front-end, server-side, database)
independently, and the Broker pattern ensures these modules interact seamlessly. This approach
not only improves the development process but also simplifies maintenance and future updates to
the website. Each module can be updated or replaced without affecting the others, as long as it
adheres to the established communication protocols set by the Broker. This flexibility is key in
web development, where technologies and user requirements are constantly evolving.

e. Object Constraint Language (OCL)
MainScreen:
Context: MainScreen::clickLogin
Invariant: privatePin, userName

77

Farm to Table

Pre-conditional: findViewById(R.id.userName)
Pre-conditional: Intent intent = new Intent(MainScreen.this, restaurantTable.class)
Post-condition: MainScreen.user.startActivity()

Context: MainScreen::clickMenu
Invariant: privateKey, menu
Pre-conditional: findViewById(R.id.menu)
Pre-conditional: Intent intent = new Intent(MainScreen.this, menuItem.class);
Post-conditional: MainScreen.menu.startActivity()

Context: MainScreen::clickOrders
Invariant: privateKey, orders
Pre-conditional: findViewById(R.id.orders)
Pre-conditional: Intent intent = new Intent(MainScreen.this, orders.class)
Post-conditional: MainScreen.orders.startActivity()

Context: MainScreen::clickFunctions
Invariant: privateKey, functions
Pre-conditional: findViewById(R.id.functions)
Pre-conditional: Intent intent = new Intent(MainScreen.this, functions.class)
Post-conditional: MainScreen.functions.startActivity()

LoginActivity:
Context: LoginActivity::pinChecked:boolean
Invariant: auth, loginButton, privateKey
Pre-conditional: pin = pinInt.getInt()
Post-conditional: return isValid

SignupActivity:
Context: SignupActivity::signup
Invariant: progressDialog
Pre-conditional: firstName = firstnameText.getText().toString()
Pre-conditional: lastname = lastnameText.getText().toString()
Pre-conditional: pin = pinText.getText().toString()
Pre-conditional: street = streetText.getText().toString()
Pre-conditional: city = cityText.getText().toString()
Pre-conditional: state = stateText.getText().toString()
Pre-conditional: zip = zipText.getInt()
Pre-conditional: accountType = accountTypeText.getText().toString()
Post-conditional: onSignUpSuccess()

78

Farm to Table

Post-conditional: onSignUpFailed()

Context: signupActivity::onSignUpSuccess
Invariant: signupButton
Pre-conditional: If sign up success
Post-conditional: setResult(RESULT_OK, null)

Context: SignupActivity::onSignUpFailed
Invariant: signupButton
Pre-conditional: If sign up failed
Post-conditional: Alert.alert(‘Sign up failed.’)

Context: SignupActivity::checked:boolean
Invariant: firstname, lastname, pin, street, city, state, zip, accountType
Pre-conditional: firstname.isEmpty()
Pre-conditional: lastname.isEmpty()
Pre-conditional: pin.isEmpty() || !Patterns.PIN.matcher(pin).matches()
Pre-conditional: street.isEmpty()
Pre-conditional: city.isEmpty()
Pre-conditional: state.isEmpty()
Pre-conditional: zip.isEmpty()
Pre-conditional: accountType.isEmpty() || accountType != 1 || accountType != 2 || accountType
!=3
Post-conditional: return isValid

10. Algorithms and Data Structures
a. Algorithms

Regarding the work data of employees, the system employs algorithms to
calculate work hours. The system tracks the timestep when an employee starts and
ends their shift. In the code, there is a method that simplifies the calculation of
hours worked. This method calculates hours worked by deducting the clock-in
time (timeClockedIn) from the clock-out time(timeOut) to determine the hours
worked during an employee’s shift.
For payroll computations, particularly if a manager needs to calculate the salaries
of employees, we will implement a Salary() method. This method will calculate
the annual salary of a given worker based on their hourly (wage) and the number
of hours worked (hoursWorked). It will provide a running total of the worker’s
yearly salary. To get the daily salaries, the worker’s salary is calculated by
multiplying hoursWorked by the wage, and this daily salary is then added to the

79

Farm to Table

expected pay(expectedPay). This calculation will be repeated for every working
period throughout the year.
When a customer initiates a transaction, the system calculates the subtotal by
adding the prices of all items in the order. Then, the tax rate is applied to calculate
the grand total. After presenting this information to the user, the system gives the
customer the option to enter a tip, which is then added to determine the final
amount due for the transaction. For payment processing, we will utilize an API(to
be determined). All order-related details will be employed in calling the API.
After a successful transaction, our rewards system will come up with a certain
amount of points based on how much the customer spent on their order, the
amount of points will be determined by the manager.
On the menu side of our website, customers have the flexibility to view the menu.
Once customers have made their selections, they will be able to add or remove
food items from their order according to their preferences or dietary restrictions.

b. Data Structures
For the employee interface, we will employ a queue data structure which is a
structured collection of items where new items are added at one end and existing
items are removed from the other end. This queue employs the principle of “first
in first out” using the ordering system. Within the employee interface, the queue
is utilized to manage orders received from the system. When an order comes in,
the chef is promptly notified, prepares the meal, and serves it, consequently
removing it from the queue. The performance of accessing an item is O(n) and
removal is O(1), making it highly efficient for this specific scenario.

In our SQL database, we’ve established an “items” table. Databases are highly
efficient for querying and selecting items based on attributes. The table’s primary
key will be ‘itemID’, and an additional column will include name, price, and
ingredients. To enhance efficiently, it would be beneficial to incorporate common
allergies and restrictions columns to indicate if a meal contains nuts for example.

To monitor employee work data, such as hours worked and current status, we will
also utilize a database. An “employee” table in the database will have a primary
key, the employee’s userID, allowing easy access to an entry related to that
employee. The column will track the employee’s clock-in time, clock-out time,
clocking stats, total hours worked, wage, and an estimated pay for the upcoming
pay cycle.

When a customer is putting an order together, the system will generate an order
object that will include a collection of items within the order, and associated

80

Farm to Table

details like the table number, customer, and server involved. The payment method
will also be represented by an object, which will contain fields specifying the
payment type (card or cash), associating it with a user, and including information
about the payment method (card number, expiration date, billing address, etc).
After a successful payment, this action will update the user’s reward information
(only if the user is a reward’s member). All of these objects will be stored as
tables within our relational SQL database.

81

Farm to Table

11. User Interface Design and Implementation(updated)

Figure 1-5: Customer Interface

82

Farm to Table

Once customers launch the website, they are greeted with the home page. From
here, customers can look over the menu items by clicking on the “Menu” option.

83

Farm to Table

An employee on the other hand can also use the customer homepage to access the
Employee interface that we already demonstrated in earlier examples by clicking
on the “Employee” button.

Figures 6-14: Employee Interface

After signing in through the employee homepage, servers and managers can see
all the available tables within the restaurant. The tables would be categorized
based on their current status. Servers can place orders by clicking on the “Waiting
for Order” tables. After clicking on a table, they would be prompted with 2
options. First option is “Dine In”, that is for putting in orders for customers dining
inside the restaurant. Second option is “To Go”, which is for putting in orders for

84

Farm to Table

customers wanting food to go. The following page will display which will be used
to place orders (It is still a work in progress and will be ready for Demo #2).

Also, servers and managers would be able to access the menu by clicking on
“Menu” located on the top of the page. If they click on the “functions” button that
would display the following page:

In this page, managers would be able make changes to the menu, manage
employees, and print out financial reports. Clicking on the “Menu Management
option displays the following page:

85

Farm to Table

In this page, managers are able to add or remove menu items. Adding an item
simply requests that they fill in the required information. Updating an item allows
the manager to select an item from the menu and update all of the properties
manually. Deleting an item requests the item name from the drop down menu and
deletes the item from the menu. Clicking on the employee management displays
the following pages:

86

Farm to Table

The pages display employee schedules and it keeps track of their shifts. In order
to add an employee to the schedule, you simply click on the “Add Employee”
button and fill in the required information.
Lastly, If they click on the “Orders” button that would display the following page:

87

Farm to Table

This page serves as a hub for accessing all orders sent to the kitchen, presented in
the chronological order they were dispatched. This facilitates cooks in
determining the sequence of orders for preparation. Each order includes a timer,
providing servers with insight into the time required for order preparation.
Clicking on the “Show Details” button will also display order details which will
allow servers to cash out their tables(this page is till a work in progress and will
be ready by Demo #2).

88

Farm to Table

12. Design of Tests(Updated)
a. Test Cases

Test Case Identifier: TC-1**
Use Case Tested: UC-2 Log in/ Log out
Pass/Fail Criteria: The test will pass if the user is able to successfully log in to the system.
The test will fail if the user inputs an invalid username or password.
Input Data: username, password

Test Procedure: Expected Result:

Step 1: User types in an invalid username
and/or password.

Step 2: User types in a valid username and
password.

Server denied the log-in attempt. Message
pops up, instructing the user to try again using
a valid log-in.

Server allows the log-in attempt. Depending
on the user type, the system allows the user to
access the specified interface.

Test Case Identifier: TC-2
Use Case Tested: UC-1: Clocking in/Clocking out
Pass/Fail Criteria: The test will pass if the user is able to successfully clock in and out for
their shift and the server is able to verify their location. The test will fail if the user is unable to
clock in or out, or the server is unable to verify the location.
Input Data: Selecting either the clock-in or clock-out button

Test Procedure: Expected Result:

Step 1: User selects to clock-in or out outside
of the restaurant.

Step 2: User selects to clock-in or out within
the restaurant.

Server allows the clock-in/clock-out attempt.
The employee’s current status updates to keep
track of whether they are currently clocked
in/out. Database records that a clock-in/out
attempt has been made in a foreign location,
along with the current time, user, location, and
updated clocking status. System allows the
user to access the specified interface.

Server allows the clock-in/out attempt. The
employee’s current status updates to keep

89

Farm to Table

track of whether they are currently clocked
in/out. Database records the
clock-in/clock-out attempt, along with the
current time, user, location, and updated
clocking status. Depending on the employee
type, the system allows the user to access the
specified interface.

Test Case Identifier: TC-3*
Use Case Tested: UC-13: Create a Rewards Account
Pass/Fail Criteria: The test will pass if a user creates a new account. The test will fail if the
username or email already exists.
Input Data: username/email

Test Procedure: Expected Result:

Step 1: User enters username or email that
already exists

Step 2: User enters username or email that
does not already exist

Server denied the user from creating an
account. Pops up message to enter different
username or email

Server allows the user to create an account.

Test Case Identifier: TC-4*
Use Case Tested: UC-8: Payment
Pass/Fail Criteria: The test will pass if the user enters a valid payment method and the
payment method has enough funds. The test will fail if payment method is not valid or funds
are insufficient
Input Data: payment method

Test Procedure: Expected Result:

Step 1: User enters invalid payment method
or valid payment method with insufficient
funds

Step 2: User enters valid payment method

System rejects the payment method and
prompts the user to use a different payment
method.

System accept payment

90

Farm to Table

with enough funds

Test Case Identifier: TC-5*
Use Case Tested: UC-6: Make/View reservations
Pass/Fail Criteria: The test will pass if the user makes a reservation when there is at least 1
free table. The test will fail if there are no free tables.
Input Data: reservation

Test Procedure: Expected Result:

Step 1: User makes a reservation when there
are no free tables.

Step 2: User makes reservation when there is
a free table

Server denies reservation and pops message to
announce user that all tables are occupied

Server accepts reservation and changes the
status of the table to reserved

Test Case Identifier: TC-6
Use Case Tested: UC-5: View/Update Table Status
Pass/Fail Criteria: The test will pass if the user changes table status while no one is sitting on
the table. The test will fail if table is not empty
Input Data: table status

Test Procedure: Expected Result:

Step 1: User changes table status while
customers are sitting on the table

Step 2: User changes table status while no one
is sitting on the table

System will reject and pop up message that
user can not change the table status at the
moment

System will accept and change the table status

Modified User Interface Requirements

Identifier Test Case Comments

**TC-1 Testing the log in/log out
feature

Instead of login in/login out,
the staff members will have to
enter its 4 digit identifier and
click continue to access the
server interface. If the
individual is not in the system,

91

Farm to Table

it will not allow it to access the
server interface. The employee
must be in the database.

*TC-3 Testing the rewards feature. This is something that will be
part of future work. Additional
work on this application may
implement these features.

*TC-4 Testing the payment feature. This is something that will be
part of future work. Additional
work on this application may
implement these features.

*TC-5 Testing the reservations
feature.

This is something that will be
part of future work. Additional
work on this application may
implement these features.

(*) This test case will not be implemented by demo 2, and is available for future development.
(**) This test case has been modified since the previous report.

b. Test Coverage
All our essential system classes are encompassed by our test cases, crucial for the
system's functionality. As we continue developing additional classes and methods, we'll
adapt and supplement our test cases accordingly. Our testing approach involves
comprehensive coverage of potential scenarios each class might encounter. Different
parts of the project will have distinct test cases, incorporating diverse testing
methodologies throughout our implementation process. Employing a bottom-up testing
strategy, we'll break down the problem into smaller components, progressively building
towards the main objective. During unit testing for use cases, our primary focus will be to
ensure adherence to the project's requirements. If any discrepancies arise, adjustments to
the use cases will be made to align with the project's specifications.

c. Integration Testing
We opted for employing the bottom-up testing strategy, which involves testing the lowest
level components first and then leveraging these components to test higher-level
components. This approach ensures that the foundational elements of the code function
correctly before their integration into other sections. By adopting this method, we can test
each layer of the project as we complete it. This testing method aligns well with our
project's needs. An alternative testing method would pose greater difficulty in pinpointing
the source of bugs, whether stemming from code integration or fundamental design and

92

Farm to Table

coding issues within classes. The bottom-up approach offers efficiency and clarity by
elucidating relationships between system objects, facilitating quicker identification of
issues for resolution. Illustratively, we independently test and personalize tasks for each
employee in the application. For instance, testing the chef's queuing system
implementation ensures proper updates to the server when the chef signals a dish is ready.
Subsequently, we assess features involving interactions between multiple objects or
classes after testing individual functions.

93

Farm to Table

13. History of Work, Current Status, and Future Work(Updated)
a. History of Work

August 21-September 4
After getting together after class and forming the team, we created a discord to
brainstorm ideas for the project and establish a line of communication. After
brainstorming for a day or 2, we all came up to the conclusion of doing a restaurant
automation project since one of the members already had experience working at a
restaurant and the rest of the members felt connected to such an idea. We got together on
the 31st of August to write up the proposal and discuss our strengths and weaknesses to
decide what we are all capable of accomplishing.
September 5-September 10
We used the feedback from the proposal to plan the next few steps of the project. Some of
the feedback helped come up with possible solutions the professor brought to our
attention. We also took into consideration previous projects and reports and the functions
they created. We could not get together during this time but everyone contributed to their
assigned parts of the report. Bjarni started working on the database design using a UML
diagram. He also created a SQL query for the database.
September 11-September 17
We discussed Bjarni’s database design during this time and the SQL query database he
created. Also, we brainstormed user interface ideas and the appearance of the site. We
came up with a model that best suited what we want our site to look like and accomplish.
Lastly, we started working on part 2 of Report 1 and divided up the work.
September 18-October 1
We took this time to continue discussing models and we agreed on the MVC model.
Shortly started implementing the user interface and database.
October 2-November 8
We took this time to create and implement the interfaces of the system. Each team
member was assigned a specific interface. We did biweekly meetings during this time to
focus on the implementation of interfaces. Ivan worked on the customer interface.
Sokhna worked on the employee homepage and the manager interface. Cheikh worked on
the server and chef interfaces. Bjarni continued working on the database of the project.
We got together the week of Demo #1 to get ready for the presentation and discuss our
designs for each of the interfaces.
November 9-November 19
We took time to integrate the front-end and back-end portions of the project.
Unfortunately, we did not have a fully implemented project. We had to get rid of a few
functional and nonfunctional requirements and we focused on the most important ones to
meet the deadline of the project and at least have a much simpler but still efficient
project.
November 27-December 8

94

Farm to Table

We took this time to get started with the testing part of the project. We also used this time
to fix bugs and finalize report 3. We updated any outdated diagrams and sections we lost
points in prior reports. We also wrote our reflective essays and got together one last time
to prepare and present our final model to the class during for Demo #2.

b. Current Work
We successfully developed fully operational user interfaces catering to both staff
members and customers. Throughout this project, we achieved a significant portion of the
critical functional requirements we identified as crucial. These achievements notably
encompassed functionalities such as presenting menus to both customers and staff
members, facilitating table visibility within the restaurant premises, enabling order
placement and modification, and dynamically updating table statuses based on their order
progress (whether empty or ready to be served). Our system also facilitated managerial
control over the waitstaff and menu modifications, empowering employees to place
orders, and granting chefs visibility into incoming orders. These accomplishments reflect
a substantial portion of our initial goals, laying a strong foundation for the project's
functionality.

c. Future Work
There remains a substantial amount of unfinished tasks within this project. Specifically,
key components such as integrating the payment system for customers—enabling
transactions via both cash and credit cards—remain unimplemented despite the presence
of the foundational back-end code. Additionally, a crucial aspect of the project that was
left unaddressed is the functionality enabling customers to create accounts and earn
points based on their online purchases, with the necessary back-end infrastructure already
in place. The majority of pending tasks revolve around the customer-facing features,
presenting ample opportunities for improvement in the coming weeks or months. Lastly,
the project lacks the implementation of managerial tools allowing for the tracking of net
sales, beverage percentages, and similar managerial metrics. These outstanding
components represent substantial areas for future development and enhancement within
the project.

95

Farm to Table

14. References
Links to previous restaurant automation reports
https://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/
Software Engineering Project Report
https://www.ece.rutgers.edu/~marsic/Teaching/SE/report1.html
Restaurant Automation Project Description
https://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/RestaurantAutomation.pdf
10 Common Software Architectural Patterns in a nutshell
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a
1e9013

96

https://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/
https://www.ece.rutgers.edu/~marsic/Teaching/SE/report1.html
https://www.ece.rutgers.edu/~marsic/books/SE/projects/Restaurant/RestaurantAutomation.pdf
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013

